Imaging of Cardiovascular Elasticity

Contract and Contract and 1 **Lake Windermere, Cumbria, United Kingdom Third International Conference on the Ultrasonic Measurement and Imaging of Tissue Elasticity**

Cardiovascular Deformation Imaging. *part 1: vascular*

Chris L. de Korte & Jan d'Hooge

Clinical Physics Laboratory, UMC St Radboud, Nijmegen, The Netherlands

Depts. of Electrical Engineering, Cardiology and Physics, Catholic University of Leuven, Leuven, Belgium

Content

- 1. Elasticity Imaging
- 2. Mechanical properties of arteries: Why and What?
- 3. Sources for deformation
- 4. Non-invasive vascular elasticity Imaging
- 5. Invasive vascular elasticity Imaging
	- •Validation in Phantoms
	- •Ex-vivo validation
	- •In vivo validation
	- •Patient studies
- 6. Three dimensional vascular elasticity imaging
- 7. Conclusion

1. Elasticity Imaging

- • Elastography: assessment of strain of tissue as a result of a controlled deformation. The response of the tissue is function of its mechanical properties.
- • Strain Imaging: assessment of strain of tissue as a result of a physiologic deformation (blood pressure, muscle contraction). The strain is related to the mechanical properties or the function of the tissue.
- • Different methods to detect strain:
	- 1. rf or envelope based elastography.
	- 2. TDI based strain/strain-rate imaging.
	- 3. Sonoelasticity Imaging.

RF or Envelope based elastography.

- Classical way of doing elastography as described in patent (1991).
- Cross-correlation analysis of windowed ultrasound signals.
- Finite difference to determine strain from time delays.

TDI based strain/strain-rate Imaging

- Method was first applied in cardiac imaging.
- Difference of tissue velocity in different regions along the ultrasound beam results in strain-rate.
- Strain-rate is converted to strain using integration.

$$
SR = (V2-V1)/d
$$

Sonoelasticity

- A low frequency vibration is applied
- A small tissue inhomogeneity causes a disturbance in the shear wave.
- Supersonic Shear Imaging (SSI) is 'updated' version.

TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 51, NO. 4, APRIL 2004

Bercoff et al, IEEE UFFC. 2004

The way into the catastrophe

Small plaque Big plaque Infarction

2. Mechanical properties of arteries

- \bullet Why do we need mechanical properties:
	- 1. Composition of the vessel wall and plaque
	- 2. Vulnerability of a plaque
	- 3. Effect of interventional procedures

- 4. Effect of pharmaceutical treatment
- 5. Age of thrombus
- • What can we image in arteries and veins using elasticity imaging methods:

Composition

• The main components of atherosclerotic plaques have different mechanical properties (Lee et al, Arteriosclerosis Thromb. 1992)

• Caps with increased macrophage density are weaker than non-inflamed caps *(Lendon et al, atherosclerosis. 1991)*

Plaque vulnerability

- \bullet Plaque vulnerability is associated with:
	- 1. Thin fibrous cap
	- 2. Big lipid pool
	- 3. Inflammation (macrophage infiltration)
	- 4. High stress regions

Age of thrombus

• The age of a thrombus is the parameter that determines the strategy to dissolve it.

Pharmaceutical treatment

- Several therapies (like statin treatment) stabilize the plaque and does not affect the size of it.
- Interventional strategies are mechanical in nature and will affect the mechanical properties of the vessel wall and plaque.

3. Sources for deformation in vascular applications

 \bullet • Balloon

•Intraluminal pressure

• Deformation from outside

Balloon

- \bullet Two types of balloon are used:
- 1. Compliant balloon
	- Optimal relation between pressure and applied stress.
	- Minimum cause of damage.

Compliant balloor Jomed imaging array Catheter tubing Guide wire No tubing under balloon Water

CHOI et al.: COMPLIANT BALLOON ULTRASOUND CATHETER

Choi et al, IEEE UFFC. 2002

2. Non-compliant balloon

- Stress in tissue is unknown dueto 'shielding' of the balloon.
- Used for monitoring interventional

Intraluminal pressure

- Minimal invasive since it is already present.
- Excellent relation between pressure and applied stress.
- Dynamic (or semi-dynamic) instead of static excitation. However, ratio remains the same.
- Non-controllable.
- Acquisitions are disturbed by motion.

Loree et al, Arteriosclerosis Thromb. 1994

Lee et al, Circulation. 1991

Deformation from outside

- Only for superficial arteries
- Especially suited for clotted arteries (thrombosis).
- Correction needed for misalignment of ultrasound beam and radial strain vector.

Aglyamov et al, IEEE UFFC. 2004

4. Non-invasive vascular elasticity imaging

- Assessment of plaque composition in superficial arteries.
- Assessment of thrombus stiffness/age
- Arteries suitable for non-invasive approach:
	- -Carotid artery
	- -Femoral artery

Assessment of plaque composition I

• Parallel orientation of the transducer and artery: *in vitro validation.*

4. Non-invasive vascular elasticity imaging the contraction of the contraction $20\,$

Assessment of plaque composition II

 \bullet Parallel orientation of the transducer and artery: *in vivo application.*

Kanai et al, Circulation. 2004

Assessment of plaque composition III

• Transducer orientation perpendicular to vessel axis *simulations.* Lateral strain Axial strain $\%$ -0.4 -0.4 2.5

4. Non-invasive vascular elasticity imaging the contraction of the contraction $22\,$

Assessment of thrombus stiffness I

- Force is applied externally with the transducer.
- Evaluation of technique in vivo in rat model.

Emelianov et al, Ultras Med Biol. 2002

Assessment of thrombus stiffness II

• Layered cylinder model is used to estimate E.

Aglyamov et al, IEEE UFFC. 2004

5. Invasive vascular elasticity Imaging

- Using an intravascular catheter.
- Pulsatile pressure or balloon is used as force.
- Assessment of strain in larger vessels (diam >2mm).
- Especially used in coronary arteries.

Validation in Phantoms

- \bullet Phantom studies:
	- 1. Flexible geometries and moduli
	- 2. Thick walled vessels to develop techniques
	- 3. Testing Influence of echogenicity
	- 4. Homogeneous phantoms allow theoretical studies (catheter position, SNR_F)

 \bullet Performed by various groups using different catheters and deformation sources

Validation in Phantoms

 \bullet Modified single element catheter using 'blood' pressure.

de Korte et al, Ultras Med Biol. 1997

Validation in Phantoms

- Single element catheter connected to commercial IVUS system
- \bullet Deformation due to increasing 'blood' pressure

Brusseau et al, Ultras Med Biol. 2002

Validation in Phantoms

 \bullet Array catheter integrated with balloon

Courtesy M. O'Donnell et al, Ann Arbor, USA

Ex-vivo validation

- \bullet Validation studies:
	- 1. Provides answer to question if technique works on real specimen
	- 2. Allows correlation with histology
	- 3. Provides tissue characterization properties
	- 4. Provides vulnerable plaque detection properties
- \bullet Performed by various groups using different catheters and deformation sources

Ex-vivo validation: feasibility I

- \bullet Single element catheter and intraluminal pressure.
- \bullet Fibrous plaque in human femoral

de Korte et al, Ultras Med Biol. 1997

Ex-vivo validation: feasibility II

- \bullet Single element connected to commercial system.
- \bullet Fibrous plaque in carotid artery.

Brusseau et al, Ultras Med Biol. 2002

Ex-vivo validation: feasibility III

- \bullet Array catheter with integrated balloon.
- \bullet Fibrotic plaque in human femoral artery.
- \bullet Strain values higher than 21% are not shown

Courtesy M. O'Donnell et al, Ann Arbor, USA

Ex-vivo validation: validation I

 \bullet Single element catheter and intraluminal pressure

CDK 2004

Ex-vivo validation: validation II

• Human femoral (n=9) and coronary (n=4) arteries with 125 regions segmented in 45 cross-sections

CDK 2004

4 $\,$ 5. Invasive vascular elasticity imaging $\,$ 35 $\,$

Ex-vivo validation: validation III

 \bullet Annular array catheter and intraluminal pressure

Picrosirius-red Alpha-actin Anti-CD68 antibody

Schaar et al, Circulation. 2003

Ex-vivo validation: validation IV

 \bullet Sensitivity/specificity analysis to determine optimal threshold

Ex-vivo validation: validation V

 \bullet Relation between strain value in high strain spot and plaque composition

Schaar et al, Circulation. 2003

Ex-vivo validation

 \bullet Relation between strain value in high strain spot and cap thickness

Schaar et al, Circulation. 2003

In vivo validation I

- \bullet Array catheter using intraluminal pressure as force.
- \bullet Yucatan Pig atherosclerotic model
- \bullet Acquisitions in femoral and iliac artery
- \bullet Histologic analysis for:
	- 1. Plaque composition
	- 2. Vulnerable plaque markers

In vivo validation II

de Korte et al, Circulation. 2002

CDK 2004

41 5. Invasive vascular elasticity imaging

In vivo validation III

• Relation between strain and plaque type

* P=0.007

de Korte et al, Circulation. 2002

In vivo validation IV

• Relation between strain and vulnerable plaque markers.

Presence of a high strain spot

de Korte et al, Circulation. 2002

Patient studies

- Patients referred for Percutaneous Coronary intervention
- Pre intervention IVUS assessment of the culprit lesion using array catheter connected to commercial IVUS echo system.
- Due to contraction of the heart the catheter will have in-plane and out-of-plane motion: Find phase of heart-cycle with minimal motion.

Patient studies II

de Korte et al, Eur Heart J. 2002

Patient studies III

 \bullet Coronary artery in patient with unstable angina pectoris

de Korte et al, WCU Proceedings. 2003

Patient studies IV

 \bullet Coronary artery in patient with stable angina pectoris

Assessment of thrombus stiffness I

• Using an intravascular array catheter as imaging device and the pulsatile pressure as force.

Courtesy J.A. Schaar et al, ErasmusMC, Rotterdam The Netherlands

Assessment of thrombus stiffness II

• Using an intravascular array catheter as imaging device covered by balloon as force.

Courtesy M. O'Donnell et al, Ann Arbor, USA

Young's modulus reconstruction

- Creation of FEM using the IVUS geometry
- Parameter variation for E of cap, lipid pool and vessel wall
- Variation of cap thickness

Baldewsing et al, Ultras Imag. 2004

Strain calculation using Deformable Images

- • Deformation map from Forward FE model to Template to generate synthetic Target image.
- • deformation map from Forward FE model to Template to generate synthetic Target image.

Template Image Deformed Mesh 1st principal Green-Lagrange strain

Courtesy Veress et al, Univ Utah, UT, USA

6.Three dimensional vascular elasticity imaging

- One cross-section does not represent whole artery.
- For follow-up studies, 3D information is crucial.
- Image formation of 3D artery with strain in the wall is complicated.
- Palpogram reveals strain at lumen vessel-wall boundary: most important identifier vulnerable plaque.
- In coronary artery: performing a pullback decreases out-of-plane motion.
- Each heartbeat a palpogram is calculated: depending on pullback speed a resolution of 0.5 or 1.0 mm is obtained.

Phantom experiment I

CDK 2004

4 $\,$ 6.Three dimensional vascular elasticity imaging $\,$. The contract of $\,$ 53 $\,$

Phantom experiment II

In vivo reproducibility: atherosclerotic rabbit model

CDK 20044 $\,$ 6.Three dimensional vascular elasticity imaging $\,$ 55 $\,$

In vivo validation: atherosclerotic rabbit model

Position [mm] Position [mm]

CDK 2004

4 $\,$ 6.Three dimensional vascular elasticity imaging $\,$. The contract of the contract of $\,$ 56 $\,$

In vivo validation: follow up in patient

Intervention Follow-up

Schaar et al, Circulation. 2002

4 $\,$ 6.Three dimensional vascular elasticity imaging $\,$ 57 $\,$

Conclusions

- (Intra)vascular elasticity imaging reveals information to identify thrombus age and plaque composition.
- •(Intra)vascular elastography is validated in phantoms, in vitro and in vivo.
- Intravascular elastography is a powerful technique to identify the vulnerable plaque.
- Three dimensional intravascular elastography opens possibilities to perform longitudinal studies.

Acknowledgements

- H Kanai (Tohoko University, Sendai)
- CD Choi, M O'Donnell (Univ of Michigan, Ann Arbor)
- E Brusseau, J Fromageau (INSERM, Lyon)
- AI Veress (Univ of Utah)
- SY Emelianov (Univ of Texas, Austin)
- JA Schaar, AFW van der Steen RA Baldewsing (ErasmusMC Rotterdam)