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1. Elasticity Imaging

• Elastography: assessment of strain of tissue as a 
result of a controlled deformation. The response of 
the tissue is function of its mechanical properties.

• Strain Imaging: assessment of strain of tissue as a 
result of a physiologic deformation (blood pressure, 
muscle contraction). The strain is related to the 
mechanical properties or the function of the tissue.

• Different methods to detect strain:
1. rf or envelope based elastography.
2. TDI based strain/strain-rate imaging.
3. Sonoelasticity Imaging.

1. Elasticity Imaging
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RF or Envelope based elastography.

• Classical way of doing elastography as described in 
patent (1991).

• Cross-correlation analysis of windowed ultrasound 
signals.

• Finite difference to determine strain from time delays.
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1. Elasticity Imaging
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TDI based strain/strain-rate Imaging

• Method was first applied in cardiac imaging.
• Difference of tissue velocity in different regions along 

the ultrasound beam results in strain-rate.
• Strain-rate is converted to strain using integration.

v1
v2 SR = (V2-V1)/d

d

1. Elasticity Imaging
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Sonoelasticity

• A low frequency vibration is applied
• A small tissue inhomogeneity causes a disturbance 

in the shear wave.
• Supersonic Shear Imaging (SSI) is ‘updated’ version.

1. Elasticity Imaging
Bercoff et al, IEEE UFFC. 2004
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The way into the catastrophe

Small plaque Big plaque Infarction
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2. Mechanical properties of arteries

• Why do we need mechanical properties:
1. Composition of the vessel wall and plaque
2. Vulnerability of a plaque
3. Effect of interventional procedures

2. Mechanical properties of arteries

PTCA Stent

4. Effect of pharmaceutical treatment
5. Age of thrombus

• What can we image in arteries and veins 
using elasticity imaging methods:
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Composition

• The main components of atherosclerotic plaques have 
different mechanical properties (Lee et al, Arteriosclerosis 
Thromb. 1992)

Tissue type Modulus

non-fibrous 41 kPa
fibrous 82 kPa
calcified 355 kPa

• Caps with increased macrophage density are weaker 
than non-inflamed caps (Lendon et al, atherosclerosis. 1991)

2. Mechanical properties of arteries
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Plaque vulnerability

• Plaque vulnerability is associated with:
1. Thin fibrous cap
2. Big lipid pool
3. Inflammation (macrophage infiltration)
4. High stress regions

2. Mechanical properties of arteries

12

3
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Age of thrombus

• The age of a thrombus is the parameter that 
determines the strategy to dissolve it.

2. Mechanical properties of arteries

• Several therapies (like statin treatment) stabilize the 
plaque and does not affect the size of it.

• Interventional strategies are mechanical in nature 
and will affect the mechanical properties of the 
vessel wall and plaque.

Pharmaceutical treatment
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3. Sources for deformation in vascular applications

• Balloon

• Intraluminal pressure

• Deformation from outside

t1 t2

3. Sources for deformation



CDK 2004 16

Balloon

• Two types of balloon are used:

1. Compliant balloon
- Optimal relation between pressure
and applied stress.

- Minimum cause of damage.

3. Sources for deformation

Choi et al, IEEE UFFC. 2002

2. Non-compliant balloon
- Stress in tissue is unknown due

to ‘shielding’ of the balloon.
- Used for monitoring interventional
procedures

Choi et al, Proc IEEE Ultras Symp. 2002
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• Minimal invasive since it is already present.
• Excellent relation between pressure and applied stress.
• Dynamic (or semi-dynamic) instead of static excitation. 

However, ratio remains the same.
• Non-controllable.
• Acquisitions are disturbed by motion.

Intraluminal pressure

3. Sources for deformation

Loree et al, 
Arteriosclerosis Thromb. 1994 Lee et al, Circulation. 1991
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Deformation from outside

• Only for superficial 
arteries

• Especially suited for 
clotted arteries 
(thrombosis).

• Correction needed for 
misalignment of 
ultrasound beam and 
radial strain vector.

3. Sources for deformation

Aglyamov et al, IEEE UFFC. 2004
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4. Non-invasive vascular elasticity imaging

• Assessment of plaque composition in superficial 
arteries.

• Assessment of thrombus stiffness/age
• Arteries suitable for non-invasive approach:

- Carotid artery
- Femoral artery

4. Non-invasive vascular elasticity imaging
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Assessment of plaque composition I

• Parallel orientation of the transducer and artery:
in vitro validation.

4. Non-invasive vascular elasticity imaging

Kanai et al, Circulation. 2004 
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Assessment of plaque composition II

• Parallel orientation of the transducer and artery:
in vivo application.

4. Non-invasive vascular elasticity imaging
Kanai et al, Circulation. 2004 
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Assessment of plaque composition III

• Transducer orientation perpendicular to vessel axis
simulations.

4. Non-invasive vascular elasticity imaging

Maurice et al, IEEE Med Imag. 2004 
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Assessment of thrombus stiffness I

• Force is applied externally with the transducer.
• Evaluation of technique in vivo in rat model.

4. Non-invasive vascular elasticity imaging

Emelianov et al, Ultras Med Biol. 2002 
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Assessment of thrombus stiffness II

• Layered cylinder model is used to estimate E.

Aglyamov et al, IEEE UFFC. 2004 

Phantom Rat model in vivo

4. Non-invasive vascular elasticity imaging
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5. Invasive vascular elasticity Imaging

• Using an intravascular catheter.
• Pulsatile pressure or balloon is used as force.
• Assessment of strain in larger vessels (diam >2mm).
• Especially used in coronary arteries.

5. Invasive vascular elasticity imaging
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Validation in Phantoms

5. Invasive vascular elasticity imaging

• Phantom studies:
1. Flexible geometries and moduli
2. Thick walled vessels to develop techniques
3. Testing Influence of echogenicity
4. Homogeneous phantoms allow theoretical 

studies (catheter position, SNRE)

• Performed by various groups using different 
catheters and deformation sources
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Validation in Phantoms

5. Invasive vascular elasticity imaging

• Modified single element catheter using ‘blood’ 
pressure.

de Korte et al, Ultras Med Biol. 1997
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Validation in Phantoms

5. Invasive vascular elasticity imaging

• Single element catheter connected to commercial 
IVUS system

• Deformation due to increasing ‘blood’ pressure

Brusseau et al, Ultras Med Biol. 2002 
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Validation in Phantoms

5. Invasive vascular elasticity imaging

Simulated 
Echogram Strain Image strain Image

40 %22 %

Courtesy M. O’Donnell et al, Ann Arbor, USA 

• Array catheter integrated with balloon
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Ex-vivo validation

• Validation studies:
1. Provides answer to question if technique works 

on real specimen
2. Allows correlation with histology
3. Provides tissue characterization properties
4. Provides vulnerable plaque detection properties

• Performed by various groups using different 
catheters and deformation sources

5. Invasive vascular elasticity imaging
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Ex-vivo validation: feasibility I

• Single element catheter and intraluminal pressure.
• Fibrous plaque in human femoral

5. Invasive vascular elasticity imaging

IVUS

Hematoxylin
Eosin

Elastic
van Gieson

Elastogram

strain
1%

0%

de Korte et al, Ultras Med Biol. 1997 
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Ex-vivo validation: feasibility II

Elastogram

2 mm

Histological section

0.5

1

1.5

2

2.5%

Echogram

• Single element connected to commercial system.
• Fibrous plaque in carotid artery.

Brusseau et al, Ultras Med Biol. 2002 
5. Invasive vascular elasticity imaging
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Ex-vivo validation: feasibility III

• Array catheter with integrated balloon.
• Fibrotic plaque in human femoral artery.
• Strain values higher than 21% are not shown 

21 %7 %

Courtesy M. O’Donnell et al, Ann Arbor, USA 
5. Invasive vascular elasticity imaging
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Ex-vivo validation: validation I

• Single element catheter and intraluminal pressure

5. Invasive vascular elasticity imaging
de Korte et al, Circulation. 2000 

strain
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Ex-vivo validation: validation II

5. Invasive vascular elasticity imaging
de Korte et al, Circulation. 2000 
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using Wilcoxon test
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• Human femoral (n=9) and coronary (n=4) arteries 
with 125 regions segmented in 45 cross-sections
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Ex-vivo validation: validation III

5. Invasive vascular elasticity imaging

• Annular array catheter and intraluminal pressure
strain

1%

0%

Picrosirius-red Anti-CD68 antibodyAlpha-actin

Schaar et al, Circulation. 2003 
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Ex-vivo validation: validation IV

• Sensitivity/specificity analysis to determine optimal 
threshold

sensitivity specificity

3
0
0 0.5 1 1.5 2 2.5

Strain [%]

1

Strain 1.26 %: Sensitivity 88%

Specificity 89%

5. Invasive vascular elasticity imaging
Schaar et al, Circulation. 2003 
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Ex-vivo validation: validation V

• Relation between strain value in high strain spot and 
plaque composition

5. Invasive vascular elasticity imaging
Schaar et al, Circulation. 2003 
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Ex-vivo validation

• Relation between strain value in high strain spot and 
cap thickness

5. Invasive vascular elasticity imaging
Schaar et al, Circulation. 2003 



CDK 2004 40

In vivo validation I

• Array catheter using intraluminal pressure as force.
• Yucatan Pig atherosclerotic model
• Acquisitions in femoral and iliac artery
• Histologic analysis for:

1. Plaque composition
2. Vulnerable plaque markers

5. Invasive vascular elasticity imaging
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In vivo validation II

5. Invasive vascular elasticity imaging

strain
1%

0%

Elastic-von Giesson Picro-Sirius red Acid Phosphatase
Polarized light

de Korte et al, Circulation. 2002 
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In vivo validation III

• Relation between strain and plaque type

5. Invasive vascular elasticity imaging

Tissue mean std

Normal segments (n=6) 0.21 0.09

Early fatty lesion (n=9) 0.46 0.17

Early fibrous lesion (n=3) 0.24 0.03

Advanced fibrous lesion (n=6) 0.22 0.04

Strain [%]

*

Mean strain value in total plaque area

* P=0.007

de Korte et al, Circulation. 2002 
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In vivo validation IV

• Relation between strain and vulnerable plaque 
markers.

5. Invasive vascular elasticity imaging

fat no fat

↑ e 9 3

↓ e 0 12

MΦ no MΦ

↑ e 11 1

↓ e 1 11

Presence of a high strain spot

de Korte et al, Circulation. 2002 
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Patient studies

• Patients referred for Percutaneous Coronary 
intervention

• Pre intervention IVUS assessment of the culprit 
lesion using array catheter connected to commercial 
IVUS echo system.

• Due to contraction of the heart the catheter will have 
in-plane and out-of-plane motion:
Find phase of heart-cycle with minimal motion.

5. Invasive vascular elasticity imaging
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Patient studies II

5. Invasive vascular elasticity imaging
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de Korte et al, Eur Heart J. 2002 
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Patient studies III

5. Invasive vascular elasticity imaging

Strain [%]
2.0

0.0

• Coronary artery in patient with unstable angina 
pectoris

de Korte et al, WCU Proceedings. 2003 
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Patient studies IV

5. Invasive vascular elasticity imaging

• Coronary artery in patient with stable angina 
pectoris

Strain [%]
1.0

0.0
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Assessment of thrombus stiffness I

• Using an intravascular array catheter as imaging 
device and the pulsatile pressure as force.

5. Invasive vascular elasticity imaging

Baseline recording 1.5 h later
0.5%

0.0%

Courtesy J.A. Schaar et al, ErasmusMC, Rotterdam The Netherlands
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Assessment of thrombus stiffness II

• Using an intravascular array catheter as imaging 
device covered by balloon as force.

35 %10 %

5. Invasive vascular elasticity imaging

Courtesy M. O’Donnell et al, Ann Arbor, USA 
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Young’s modulus reconstruction

• Creation of FEM using the IVUS geometry
• Parameter variation for E of cap, lipid pool and 

vessel wall
• Variation of cap thickness

Baldewsing et al, Ultras Imag. 2004 
5. Invasive vascular elasticity imaging
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Strain calculation using Deformable Images

• Deformation map from Forward FE model to Template to 
generate synthetic Target image.

• deformation map from Forward FE model to Template to 
generate synthetic Target image.

Template Image Deformed Mesh 1st principal Green-
Lagrange strain

0.5

0.0

Courtesy Veress et al, Univ Utah, UT, USA
5. Invasive vascular elasticity imaging
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6.Three dimensional vascular elasticity imaging

• One cross-section does not represent whole artery.
• For follow-up studies, 3D information is crucial.
• Image formation of 3D artery with strain in the wall is 

complicated.
• Palpogram reveals strain at lumen vessel-wall 

boundary: most important identifier vulnerable plaque.
• In coronary artery: performing a pullback decreases 

out-of-plane motion.
• Each heartbeat a palpogram is calculated: depending 

on pullback speed a resolution of 0.5 or 1.0 mm is 
obtained.
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Phantom experiment I

6.Three dimensional vascular elasticity imaging
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Phantom experiment II
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6.Three dimensional vascular elasticity imaging
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In vivo reproducibility: atherosclerotic rabbit model
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6.Three dimensional vascular elasticity imaging
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In vivo validation: atherosclerotic rabbit model
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6.Three dimensional vascular elasticity imaging



CDK 2004 57

In vivo validation: follow up in patient
Intervention Follow-up

Schaar et al, Circulation. 2002 
6.Three dimensional vascular elasticity imaging
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Conclusions

• (Intra)vascular elasticity imaging reveals information 
to identify thrombus age and plaque composition.

• (Intra)vascular elastography is validated in 
phantoms, in vitro and in vivo.

• Intravascular elastography is a powerful technique to 
identify the vulnerable plaque.

• Three dimensional intravascular elastography opens 
possibilities to perform longitudinal studies.
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